faculty of electric power engineering and automatics of “Igor Sikorsky Kyiv Polytechnic Institute”

Areas of research

Areas of research

Field oriented control system for induction motors

The department has developed the field oriented control algorithms for induction motors (IM), which provide increased quality control and energy efficiency of electromechanical energy conversion.

The algorithms with angular velocity sensor provide global exponential tracking of linkage vector module and mechanical coordinates (torque, angular velocity, position). Also they have properties of robustness to parameter perturbations of IM. A number of solutions adaptive to active resistance of a stator and a rotor have been found. By using the systems with variable structure, the algorithm with the properties of invariance to variations of active resistance of a rotor circuit has been developed.

Sensorless field oriented control algorithms provide local exponential tracking of rotor flux vector module and mechanical coordinates. The quality achieved in the developed sensorless field oriented control systems is close to the existing one in angular velocity measuring systems. The achievable range of angular velocity regulation is about 1:100.

All theoretical solutions have been tested experimentally for installations up to 200 kW with the implementation of field oriented control structures for digital signal processors.

Areas of development: consideration of saturation, operation in the mode of profound weakening the field, consideration and qualitative compensation of inverter imperfections in sensorless control systems, increasing robustness, adaptive control.

Field oriented control systems with maximizing torque per ampere ratio

Field oriented control algorithms for induction motors with maximizing torque per ampere ratio (MaximizationTorque per Ampere – MTA) and considering the saturation of a magnetic circuit have been developed/ These algorythms provide:

– higher torque of a motor while limiting the current of an inverter or a primary source of electric power;

– greater energy efficiency as a criterion MTA is close to that of minimum active losses;

– possibility of implementing energy saving function “stop & go”, which is the most efficient in transport applications.

The effectiveness of the developed algorithms is confirmed experimentally while using 0.75-50 kW motors.

Areas of development: operation in the mode of weakening the field, regulation of angular position of MTA, implementation on an actual vehicle, MTA – control without measuring mechanical coordinates.

Electromechanical systems based on double fed induction machine

The standard configuration of an electromechanical system with a double fed induction machine (DFIM) involves connecting stator of a wound-rotor induction motor to the grid , while a semiconductor converter is connected  to a rotor circuit and it is used for control the coordinates of system.

At present, the following DFIM algorithms are developed and experimentally investigated (implemented):

– algorithms to start and synchronize DFIM with the grid;

– algorithms of vector control of coordinates in drive mode;

– algorithms of controlling a generator when working on the grid;

– algorithms of controlling an autonomous generator;

Areas of development: sensorless control of DFIM, robust and adaptive control.

Induction motor parameter identification

A number of algorithms to identify electrical parameters of an induction motor, which ensure their asymptotic evaluation while using special test signals, have been developed. The amount of time required for this identification is much smaller than the mass-produced products of known manufacturers. The algorithms are tested experimentally with low-power machines.

Areas of development: procedures for designing test signals, consideration of IM saturation, and inverter imperfections.

Controlling active rectifiers

The algorithms to control active rectifiers (for IGBT), which provide voltage stabilization in  DC part and regulate power factor at a given level, have been developed. Experimental tracking as the part of FOC system with 2.2 kW motor has been conducted.

Areas of development: optimization of parameters to reduce costs.

Controlling parallel active filters

A parallel active filter is designed to compensate for harmonic current distortion in the network created by non-linear loads such as electric semiconductor converters, impulse power supply, arc furnaces etc.

The algorithms in real-time evaluation of harmonic current as well as algorithms to stabilize the voltage capacity of DC part and algorithms to adjust filter current have been developed. Existing developments are investigated through mathematical modeling and partly in an experimental way.

Areas of development: practical implementation and experimental testing a parallel active filter.

Unified controllers and scope of their implementation

We have developed a number of standardized digital controllers based on digital signal processors Texas Instruments (TMS320F28335, TMS320F28069 and others made earlier), by means of which practical realization and implementation of control structures developed at the Department are made.

Implementation of the results is carried out:

– commercially in a traction electric drive of a tram (100 kW);

– commercially in electromechanical systems of the process industry (15 – 200 kW);

– commercially in power generation systems for wind turbines;

– in an industrial design of traction electric drive of a trolleybus;

– in water recycling station by implementing an electric drive with double fed induction machine (750 kW);

Other areas of interest

In addition, there are a lot of developments related to controlling synchronous motors, DC motors, and linear induction motors. We are also interested in electromechanical systems with new types of electric machines, systems with complex mechanics, electric transport, electric cars and other objects when standard solutions do not work.

Defense of the Candidate of Sciences thesis Zaichenko

Defense of the Candidate of Sciences thesis, Y. Zaichenko October 06, 2020 at 15: 00 in the 701st auditorium of ...
Тег «Далее»
/ Science, News, Announcement

Scientific conference PAEP-2020

PAEP 2020 conference and participation of representatives of the AEMS-ED department This year’s conference “Problems of automated electric drive. Theory ...
Тег «Далее»

British University through the eyes ours students

From the head of the department, Sc.D. prof. S. Peresada In accordance with the Erasmus+ program, students and teachers of ...
Тег «Далее»
Програма “Green Deal”: майбутнє спеціалізації кафедри АЕМС-ЕП, КПІ

European Commission Program “Green Deal”

Green Deal program: the future of the specialization «Electromechanical systems of automation, electric drive and electromobility» in the development of ...
Тег «Далее»
/ electromobility, Science, News

Doctoral dissertation of S. M. Kovbasa

Development of the theory of sensorless vector control of electromechanical systems with induction motors. Specialty 05.09.03 “ElectrotechnicalComplexes and Systems” The ...
Тег «Далее»

Protection of Dual Master’s Degree

At our department was online protection of the Master of Sciences Andrii Otroshko. The master’s dissertation A. Otroshko  was performed ...
Тег «Далее»


As result of 2 semester

2019/2020 academic year

Total students: 162,
on the budget: 157.


Educational process in quarantine

Taking into account the epidemiological situation in Ukraine and the level of danger on the territory of Kiev (More info is by the link.), and due to the extension of quarantine in Ukraine until December 31, the distance learning format for students also continues until December 31. The first vice-rector Yuriy Yakymenko announced this during the meeting of the rector's office on October 19.

The last announcements