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ВСТУП 

Дисципліна “Теорія адаптивного та робастного керування. Курсова 

робота” є однією із заключних  у підготовці магістрів за освітньо-науковою 

програмою “Електромеханічні системи автоматизації, електропривод та 

електромобільність”. Курсова робота  об’єднує методи керування, які 

розглянуто в дисциплінах на попередніх курсах підготовки: «Теорія 

автоматичного керування», «Моделювання електромеханічних систем», 

«Робототехніка та мехатроніка», «Керування електроприводами», «Курсовий 

проект з керування електроприводами» першого (бакалаврського) рівня та 

«Ідентифікація, спостереження, адаптивне керування в електромеханічних 

системах» другого (магістерського) рівня. 

Метою курсової роботи є імплементація методів робастних систем для  

керування промисловими роботами в задачах відпрацювання заданих 

траєкторій руху, які конструюються за рахунок розв’язку прямої і оберненої 

задачі кінематики методом Денавіта-Хартенберга. Робастність алгоритмів 

керування передбачається дослідити моделюванням системи відпрацювання 

координат робочого органу в умовах врахування точок виродженості. У 

результаті вивчення дисципліни студенти повинні набути  знань зі структури, 

методів керування та налаштування систем керування рухом. 

Курсова робота представлена в 26-х варіантах, які надані у додатку А. 

Розв’язок задач слід супроводжувати необхідними поясненнями та 

математичними викладками. Вимоги до оформлення курсових робіт наведено у 

додатку Б. 
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1 ПРОГРАМА КУРСОВОЇ РОБОТИ 

На рис. 1.1 зображена кінематична схема дволанкового маніпулятора, що 

працює в вертикальній площині. 

 

Р  

1
  

2  

 

Рисунок 1.1 – Кінематична схема дволанкового маніпулятора 

На рисунку позначено: 
1

l  та 
2

l  – довжини відповідно першої та другої 

ланок маніпулятора, 
c 1 c 2

l , l − відстань від початку першої та другої ланок до їх 

центрів мас відповідно, 
 

    – узагальнені координати положення ланок; 

1 2
m , m  − маси ланок; 

1 2
J , J  − моменти інерції ланок відносно їх центрів мас, 

1 2
M , M  − моменти приводних двигунів ланок. 

Координати робочого органу маніпулятора визначаються вектором 

( ),
T

x y=x  у відповідності з методикою проектування алгоритмів керування 

рухом маніпуляційних систем. 

У курсовій роботі необхідно виконати: 
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1. Алгоритмізацію траєкторій руху по координатах ( )x t  та ( )y t  для 

заданої фігури відпрацювання. Вибрати довжини ланок маніпулятора. 

2. Розв‘язати пряму задачу кінематики методом Денавіта-Хартенберга. 

3. Розв‘язати обернену задачу кінематики та побудувати закони змін 

узагальнених координат маніпулятора, що необхідні для 

відпрацювання заданої фігури. Виконати перевірку отриманого 

рішення методом моделювання прямої задачі кінематики. 

4. Розв‘язати обернену швидкісну задачу та побудувати закони змін 

узагальнених швидкостей, що необхідні для відпрацювання заданої 

фігури. 

5. Отримати динамічну модель дволанкового маніпулятора і розрахунок 

її параметрів. 

6. Спроектувати алгоритм позиційного і позиційно-контурного 

керування для двох значень власної частоти недемпфованих коливань 

0
5 0 / = р а д с ; 

0
1 0 0 / = р а д с  і коефіцієнту демпфування 1 = . 

7. Виконати дослідження динамічних процесів відпрацювання заданих 

траєкторії для позиційного і позиційно-контурного керування для двох 

значень власної частоти недемпфованих коливань. 

8. Виконати індивідуальне завдання, задане керівником курсової роботи. 

При виконанні курсової роботи прийняти наступні дані: 

- ланки маніпулятора – суцільні циліндри із зовнішнім діаметром 

0 .0 2d =  м; 

- ланки маніпулятора виготовлені із сталі з густиною 7 8 0 0 =  кг/м3; 

- максимальна лінійна швидкість руху при відпрацювання траєкторії 

1=
m a x

v  м/с, при виході на траєкторію 2=
m a x

v  м/с, максимальне 

значення прискорення 
m a x

4 0a =  м/с2; 

- тривалість витримки паузи у точках зламу траєкторії 0 .2
p a u se

t =  с. 

Задані фігури для відпрацювання та їх параметри наведені в Додатку А. 
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2 ІНДИВІДУАЛЬНІ ЗАВДАННЯ 

1. Зменшити довжини ланок так, щоб наблизити зону виродженості 

маніпулятора на відстань ( )1 2
0 .0 5 l l +  до фігури. Дослідити поведінку 

узагальнених швидкостей у порівнянні з базовим випадком. 

2. Виконати розрахунок траєкторії руху при обмеженості ривка на рівні 

1000 м/с3. 

3. Виконати розрахунок прямої задачі кінематики для триланкового 

маніпулятора. 

3 МЕТОДИЧНІ ВКАЗІВКИ ДО ВИКОНАННЯ КУРСОВОЇ РОБОТИ 

3.1 Планування траєкторії руху 

На рис. 3.1 в якості прикладу показана фігура у вигляді прямокутника, що 

потребує відпрацювання робочим органом маніпулятора. Вся траєкторія для 

відпрацювання розбивається на лінії трьох типів: відрізок, дуга, коло. Вихід на 

траєкторію здійснюється по відрізку. Кінець відрізку виходу на траєкторію 

співпадає з початком першої лінії траєкторії. Схід з траєкторії здійснюється по 

прямому відрізку з останньої точки траєкторії, що обов‘язково співпадає з 

початковою. 

Для фігури, що показана на рис. 3.1, рух виконується по відрізкам прямих 

ліній: Н-1, 1-2, 2-3, 3-4, 4-1, 1-Н. 

На кожній з цих ділянок робочий орган має рухатися за тахограмою, що 

показана на рис. 3.2. 

На рисунку позначено: 
0

t  – час початку руху; 
1

t  – час досягнення 

усталеної швидкості, 
2

t  – час закінчення руху на усталеній швидкості, початок 

гальмування, 
3

t  – час закінчення руху на ділянці, 1 – ділянка розгону, 2 – 

ділянка рівномірного руху, 3 – ділянка гальмування. 

Розглянемо для прикладу рух на ділянці Н-1. Вихід на траєкторію 

здійснюється вздовж осі У, значення абсциси робочого органу ( )x t  на всій 
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ділянці залишається незмінним і дорівнює абсцисі точки початку руху, а 

швидкість 0
x

v = . 

0 0.2 0.4 0.6 0.8 1 1.2

-0.4

0

0.4

0.8

Y
, 

m

X, m

H 

4 3

2 

1 

 

Рисунок 3.1 – Приклад заданої фігури для відпрацювання 

 

Рисунок 3.2 – Задана тахограма руху на однонаправленій ділянці 

Час розгону та час гальмування на ділянках 1 та 3 розраховується 

виходячи з відомого рівняння руху з постійним прискоренням 
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m a x

m a x

v
t

a
 = , (3.1) 

визначивши інтервал часу 

 1 0 3 2
t t t t t = − = − . (3.2) 

Для умов, що розглядаються, значення 0 .4t =  с, для ділянок виходу на 

траєкторію та 0 .2t =  с, для ділянок руху по траєкторії. 

На ділянках прискорення (гальмування) буде пройдена відстань: 

 2

m a xp
S a t=  . (3.3) 

Визначимо час руху з постійною швидкістю, як 

 
1 2 1

t t t = − . (3.4) 

Відстань, що буде пройдена за цей час дорівнює: 

 
m a x 1n

S v t=  . (3.5) 

Якщо відстань ділянки, що розглядається, дорівнює 
g

S , тобто 

 
g p n

S S S= + , (3.6) 

то рішення (3.6) відносно 
1

t  буде: 

 ( )
2

1 m a x

m a x

1
. = − 

g
t S a t

v
 (3.7) 

Якщо 
g p

S S  (закоротка ділянка для розгону до максимальної 

швидкості), тоді рух здійснюється по тахограмі трикутника, як це показано на 

рис. 3.3. 

В цьому випадку 
1 0 2 1

t t t t t = − = −  і розраховується з (3.3) у вигляді: 

 

1

2

m a x

g
S

t
a

 
 =  

  .

 (3.8) 

Для фігури, що розглядається (рис. 3.1), на ділянці руху Н – 1 отримаємо: 

 

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

1 m a x 1 0 1

2 m a x 1 2

3 m a x m a x 2 2 3

0

, п р и ;

, п р и ;

, п р и ;

=

= − 

= 

= − − 

x

y

y

y

v t

v t a t t t t t

v t v t t t

v t v a t t t t t
.

 (3.9) 
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Рисунок 3.3 – Задана тахограма руху на короткій однонаправленій ділянці 

Інтегруючи (3.9), знаходимо графік зміни координат робочого органу: 

 

( ) ( )

( ) ( )
( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )

0

2

0

1 0 m a x 1

2 1 1 m a x 1 1 2

2

2

3 2 2 m a x 2 m a x 2 3

, п р и ;
2

, п р и ;

, п р и ;
2

=

−
= + 

= + − 

−
= + − − 

x t x t

t t
y t y t a t t t

y t y t v t t t t t

t t
y t y t v t t a t t t

. (3.10) 

Знак 
m a x

v  та 
m a x

a  встановлюється відповідно з геометрією руху по фігурі, 

що відпрацьовується. 

Аналогічно виконується алгоритмізація рухів на інших ділянках фігури. 

В загальному випадку руху по відрізку, що показаний на рис. 3.4, 

планування траєкторії руху відбувається згідно (3.1) – (3.10) з використанням 

проекцій швидкості та прискорення руху: 

 
( )

( )

m a x

m a x

c o s ,

s in ,

= 

= 

x

y

v v

v v
 (3.11) 

 
( )

( )

m a x

m a x

c o s ,

s in .

= 

= 

x

y

a a

a a
 (3.12) 
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На рисунку показано: точка “1” з 

координатами ( )1 1
,x y – точка початку відрізка, 

точка “2” з координатами ( )2 2
,x y

 
– точка 

кінця відрізка,   − кут нахилу відрізка до осі 

O x . 

При алгоритмізації траєкторій у формі 

дуги або кола використовують розгляд у 

полярній системі координат. При цьому в 

рівняннях (3.9) та (3.10) лінійні швидкості (прискорення) замінюються на 

кутові швидкості (прискорення). Для кола, показаного на рис. 3.5, маємо 

наступні співвідношення: 

 

m a x

m a x

m a x

m a x

,

,

 =

 =

v

R

a

R

 (3.13) 

де 
m a x m a x

,   – значення максимальних кутових швидкостей та прискорень. 

Аналогічно виразам (3.9), (3.10) при русі по колу будемо мати: 

 

( ) ( )

( )

( ) ( )

( ) ( )
( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( )
( )

( )

1 m a x 0 0 1

2 m a x 1 2

3 m a x m a x 2 2 3

2

0

1 0 m a x 0 1

2 1 m a x 1 1 2

2

2

3 2 m a x 2 m a x 2 3

, п р и ;

, п р и ;

, п р и ;

, п р и ;
2

, п р и ;

, п р и ; .
2

 =  − 

 =  

 =  −  − 

−
 =  +  

 =  +  − 

−
 =  +  − −  

t t t t t

t t t

t t t t t

t t
t t t t t

t t t t t t t

t t
t t t t t t t

 (3.14) 

Декартові координати руху робочого органу та його лінійні швидкості 

для кожного із інтервалів руху будуть: 

 

α 

Рисунок 3.4 – Рух по відрізку 
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( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( ) ( )

c o s

s in

s in

c o s , 1, 2 , . . . , ,

= 

= 

= −  

=   =

i i

i i

x i i i

y i i i

x t R t

y t R t

v t R t t

v t R t t i n

 (3.15) 

де n  – кількість елементарних рухів по 

траєкторії. 

Графіки змін координат робочого органу 

( )x t , ( )y t  та його швидкостей для 

відпрацювання фігури рис. 3.1, показані на 

рис. 3.6. 

Для визначення довжин ланок маніпулятора 

рекомендовано використовувати залежність: 

 ( )1 2 1
1 .3 1 .5l l L+ =  ,  

де 
1

L  – радіус робочої зони маніпулятора. У випадку, що розглядається 

(рис. 3.1), приймаємо 
1 2

l l l= = , 0 .7l =  м. 

3.2 Пряма задача кінематики 

Питання кінематики маніпуляційних систем викладені в [1] (стор. 27-89), 

[2] (стор. 73-134). У даному підрозділі стисло викладені основні положення 

кінематики багатоланкових механізмів. 

3.2.1 Положення та орієнтація твердого тіла у просторі 

Кінематика маніпулятора вивчає геометрію руху багатоланкового 

механізму, який при цьому розглядається як система зв’язаних твердих тіл. 

Кожне тверде тіло у просторі характеризується своїм положенням та 

орієнтацією. Положення твердого тіла представляє довільна точка, зафіксована 

відносно твердого тіла. Нехай O x y z  буде система координат, зафіксована на 

основі, а 'O  − довільна точка твердого тіла, як показано на рис. 3.7. Тоді 

положення твердого тіла в системі координат O x y z  характеризується вектором 

Рисунок 3.5 – Рух по колу 

θ 
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( )x t  ( )y t  

 

( )x
v t  ( )y

v t  

 

Рисунок 3.6 – Графіки змін координат робочого органу при русі по фігурі 

рис. 3.1 

 ( )0 0 0 0
, ,

T

x y z=x . (3.16) 

Для визначення орієнтації твердого тіла в просторі зафіксуємо на ньому 

систему координат ' ' ' 'O x y z , яка рухається разом з твердим тілом. Тепер 

орієнтація твердого тіла однозначно визначається напрямком координатних 

осей ', ', 'x y z .  

Будемо вважати, що напрямок осей системи координат O x y z  задано 

ортами , ,n t b , а системи ' ' ' 'O x y z  ортами ', ', 'n t b  відповідно. Проекції ортів 

', ', 'n t b , отримані в системі координат O x y z , чисельно характеризують взаємне 

розташування двох систем координат та відомі як направляючі косинуси. При 

цьому компоненти кожного із векторів ', ', 'n t b  представляють собою проекції 
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на осі , ,x y z , задані ортами , ,n t b . Для зручності об’єднаємо три вектори, що 

розглядаються, та представимо їх у вигляді матриці A , розмірністю 3х3 

 ( )', ', '=A n t b
T

. (3.17) 

Матриця A  повністю описує взаємну орієнтацію твердого тіла в базовій 

системі координат та називається матрицею направляючих косинусів або 

матрицею повороту. Структура даної матриці наступна: 

 

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

a a a

a a a

a a a

 

 
=
 
 
 

A

,

 (3.18) 

де: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

c o s , ' ; c o s , ' ; c o s , '

c o s , ' ; c o s , ' ; c o s , '

c o s , ' ; c o s , ' ; c o s , '

a a a

a a a

a a a

= = =

= = =

= = =

n n n t n b

t n t t t b

b n b t b b
.

 

 

Рисунок 3.7 – Положення твердого тіла в системі координат O x y z  

Вектори-стовпчики матриці A  ортогональні одне одному, отже 

 ' 0 ; ' 0 ; ' 0 =  =  =
T T T
n t t b b n  (3.19) 

і мають одиничну довжину 

 ' 1; ' 1; ' 1= = =n t b , (3.20) 

де a  − означає Евклідову норму вектора a . 
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Матриця, що має властивості (3.19) та (3.20), є ортогональною і для неї 

справедливо: 

 
1 T−
=A A . (3.21) 

Позначення “ 1−
A ” визначає обернену матрицю до матриці A  із умови 

1 1− −
 =  =A A A A I , де I  − одинична матриця. 

Розглянемо конструкцію, що наведена на рис. 3.8. Бачимо, що початки 

координат O  та 'O , а також осі z  та 'z  співпадають. Кут між осями x  та 'x  

позначимо  . Необхідно знайти матрицю 


A . 

 

Рисунок 3.8 – Розташування систем координат із спільної віссю 'z z= , 

повернуті одна відносно одної на кут   

З рис. 3.8 видно, що кожен із ортів ', ', 'n t b  має наступні координати в 

системі відліку O x y z : 

 

( )

( )

( )

( )

c o s s in 0

s in ; c o s ; 0

0 0 1

 −      

     
  =  =  =

     
    
    

n t b , 

а отже матриця 


A  дорівнює 
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 ( )

( ) ( )

( ) ( )

c o s s in 0

, , s in c o s 0

0 0 1



 −  

 
  = =  

 
 
 

A n t b . (3.22) 

3.2.2 Перетворення координат 

Із просторової геометрії відомо, що якщо початки координат O  та 'O  

знаходяться в одній точці, то координати довільної точки в двох системах 

відліку будуть зв’язані виразами: 

 ( ) ( )'; , , ; ' ', ', '
T T

x y z x y z= = =x A x x x , (3.23) 

де , ,x y z  − координати точки в системі відліку O x y z , ', ', 'x y z  − в системі 

відліку ' ' ' 'O x y z . 

Зворотне перетворення знаходиться у вигляді 

 1
'

−
= x A x , (3.24) 

Враховуючи ортогональність матриці A  (3.21), маємо 

 ' = 
T

x A x  (3.25) 

Таким чином, матриця направляючих косинусів ( )
T

A A  визначає пряме 

(обернене) перетворення координат ' ' ' 'O x y z O x y z→ , ( ' ' ' 'O x y z O x y z→ ). 

Обидві системи координат утворюють “праву” систему координат. 

Для випадку, що зображений на рис. 3.8, на основі (3.22) – (3.23) 

знаходимо пряме та обернене перетворення 

 '


=x A x , 

 

( ) ( )

( ) ( )

c o s s in 0 '

s in c o s 0 '

0 0 1 '

 −     

    
=  
    

    
    

x x

y y

z z

; (3.26) 

 '


=x A x
T , 

 

( ) ( )

( ) ( )

' c o s s in 0

' s in c o s 0

' 0 0 1

     

    
= −  
    

    
    

x x

y y

z z

. (3.27) 
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Не важко помітити, що при повороті навколо осей O y  на кут   та O x  на 

кут  , отримаємо відповідно: 

 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

c o s 0 s in ' c o s 0 s in

0 1 0 ' ; 0 1 0

s in 0 c o s ' s in 0 c o s



         

      
= =
      

      −   −        

A

x x

y y

z z

, (3.28) 

 ( ) ( )

( ) ( )

( ) ( )

( ) ( )

1 0 0 ' 1 0 0

0 c o s s in ' ; 0 c o s s in

0 s in c o s ' 0 s in c o s



      

      
=  −  =  − 
      

               

A

x x

y y

z z

. (3.29) 

При повороті навколо трьох осей матриця повороту дорівнює добутку 

окремих матриць 

 
  

=A A A A . (3.30) 

Послідовність матриць у добутку повинна відповідати послідовності 

поворотів. 

У випадку коли початки координат O  та 'O  не знаходяться в одній точці 

рівняння (3.23) застосовувати не можна. 

Розглянемо рис. 3.9, на якому літерою P  позначена довільна точка в 

просторі, координати якої в системі відліку O x y z  будуть ( )
T

x y z=x , а в 

системі координат, зв’язаній з твердим тілом ( )' ' ' '
T

x y z=x . Необхідно 

встановити відповідність між двома системами координат, тобто знайти 

перетворення координат між зафіксованою на основі системою відліку та 

системою, зв’язаною з твердим тілом. 

З рис. 3.9 знаходимо, що 

 O P = O O ' + O 'A + A B + B P , (3.31) 

де 
0

, '= =O P x O O x . Оскільки вектор , ,O 'A A B B P  паралельні ортам ', ', 'n t b  

відповідно та мають довжини ', ', 'x y z , то вираз (3.31) можна записати у 

вигляді 
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0

0

,

а б о

.

     = +  +  + 

= +

x x x n y t z b

x x A x

 (3.32) 

 

Рисунок 3.9 – Перетворення координат із системи зв’язаної з твердим тілом в 

систему O x y z  

Рівняння (3.32) описує пряме перетворення координат ' →x x . Для 

знаходження оберненого перетворення необхідно помножити обидві частини 

рівняння (3.31) на A T  

 
0

'= +A x A x A A x
T T T . 

Звідси маємо 

 
0

' = − +x A x A x
T T . (3.33) 

Розкриємо фізичний зміст матриці A . За її допомогою: 

- встановлюється орієнтація системи координат ' ' ' 'O x y z  відносно O x y z . 

Вектори-стовпчики матриці A  являють собою направляючі косинуси 

кожної осі ' ' ' 'O x y z  спроектованої в O x y z ; 

- здійснюється координатне перетворення із ' ' ' 'O x y z  в O x y z ; 

- здійснюється обертання векторів у системі координат O x y z . 
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3.2.3 Перетворення в однорідних координатах 

Із формули (3.33) слідує, що перетворення координат включає 

паралельний перенос початку координат на 
0
x  та подальший поворот. Більш 

просту форму запису (3.33) можна отримати шляхом переходу до так званих 

однорідних координат. При цьому як перенос, так і орієнтація задаються 

однією матрицею. 

Для переходу до однорідних координат визначаються вектори 

розмірністю 4х1, які отримуються шляхом введення додаткової компоненти, що 

дорівнює одиниці. Їх прийнято позначати тими ж літерами 

 ( ) ( ), , , 1 ; ' ', ', ', 1= =x x
T T

x y z x y z . (3.34) 

Матриця перетворення A  має розмірність 4х4 та формується наступним 

чином 

 
0

1

 
=  
 

A x
A

O
, (3.35) 

де ( ), ,0 0 0=O  − нульовий вектор-рядок. 

Матриця направляючих косинусів A  доповнюється до матриці 

розмірністю 4х4 додаванням вектора 
0
x  та введенням четвертого рядку із 

трьома нулями та одиницею. 

Рівняння (3.32) при цьому запишеться 

 '=x A x , (3.36) 

тобто 

 0

'

'

1 '

1 1

   

   
 

   =  
    
   

   

A x

O

x x

y y

z z
. 

Виконуючи множення матриці на вектор, отримаємо ті ж співвідношення, 

що і при використанні (3.32), доповнені тотожним співвідношенням 1 1= . 

Перетворення координат, задане (3.36), називається однорідним перетворенням. 
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Його перевага полягає у компактності запису, яка істотно проявляється при 

виконанні декількох послідовних перетворень. 

Нехай '' '' '' ''O x y z  ще одна система координат, як показано на рис. 3.10, а 

''x  − координати точки P  в цій системі координат, тоді 

 
0

' ' ' ''= +x x A x , (3.37) 

де 
0

'x  та 'A  представляють собою вектор та матрицю із розмірностями 

відповідно 3х1 та 3х3, зв’язані переходом від ''x  до 'x . Після підстановки (3.37) 

в (3.36), отримаємо: 

 
0 0

' ' ''= + +x x A x A A x . (3.38) 

Із (3.38) видно, що при подвійному перетворенні координат доводиться 

мати справу з трьома складовими правої частини і їх число буде зростати із 

збільшенням кількості послідовних перетворень. У загальному випадку n  

послідовних перетворень координат формують поліном n -го порядку, що 

складається із ( )1+n  членів. 

Розглянемо n  послідовних перетворень координат із системи відліку n  в 

початкову систему координат. Позначимо 1−
A

i

i
 матрицю з розмірністю 4х4, 

зв’язану з однорідним перетворенням від i -ї до ( )1−i -ї системи координат, тоді 

вектор x
n
 в n -й системі відліку перетвориться в вектор x  початкової системи 

координат за допомогою перетворення 

 0 1 1

1 2

−
=  x A A A x

n

n n
. (3.39) 

Визначимо обернене однорідне перетворення. Із (3.36) знаходимо 

 1
'

−
=x A x . (3.40) 

З іншого боку, це ж перетворення виражене у формі(3.33), має вигляд 

 
0

' = − +x A x A x
T T .  

Зіставляючи два останні вирази, знайдемо 1−
A . Неважко помітити, що 

0
x  

в (3.33) замінюється на 
0

− A x
T , в той же час як A  змінюється на A T . 
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Рисунок 3.10 – Подвійне перетворення координат при знаходженні тіла у суб-

підпорядкованій системі координат 

Із врахуванням цього обернена матриця 1−
A , що є матрицею переходу від 

системи координат O x y z  до системи координат ' ' ' 'O x y z , дорівнює 

 1 0

1

−
 −

=  

 

A A x
A

O

T T

. (3.41) 

Отриманий результат перевіряється обчисленням 1−
A A  та 1−

A A , обидва 

добутки дорівнюють одиничній матриці I . 

Також як і для матриці A , визначник матриці A  дорівнює одиниці: 

1=A . Можна також встановити фізичний зміст вектора 
0

− A x
T : його 

компоненти представляють собою проекції вектора 
0
x  на осі системи 

координат ' ' ' 'O x y z  (див. рис. 3.10). 

3.2.4 Кінематичні моделі маніпулятора 

Будемо використовувати розглянутий математичний апарат для 

моделювання кінематики маніпуляторів. За допомогою однорідного 

перетворення задається положення та орієнтація кожної ланки маніпулятора. 
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Маніпулятор, як багатоланковий механізм, представляє собою 

кінематичну структуру, що складається із з’єднання твердих тіл. рис. 3.11 

зображає маніпулятор, який представлений послідовним з’єднанням твердих 

тіл. Таке з’єднання називається розімкненим кінематичним ланцюгом. 

Більшість промислових роботів, що випускається, мають маніпулятори, які 

представляють собою розімкнені кінематичні ланцюги, які і будуть 

розглядатися далі. 

Кожній ланці розімкнутого кінематичного ланцюга присвоюється 

значення від 0 до n , як показано на рис. 3.11. Базовій ланці, зазвичай зв’язаній з 

основою, присвоюється номер 0, найбільш віддалена ланка має n -й номер. 

З точки зору виконання поставленої задачі нас буде цікавити рух 

робочого органу маніпулятора, тобто його n -ї ланки. З цією метою остання 

ланка зв’язана з системою координат 
n n n n

O x y z . Початкова система координат 

0 0 0 0
O x y z  зв’язана з основою. Розглядання руху робочого органу маніпулятора 

будемо проводити в цій системі координат. Здійснюючи ряд послідовних 

перетворень, досягається аналітичний опис положення та орієнтації робочого 

органу відносно базової системи відліку 
0 0 0 0

O x y z . 

Як видно з рис. 3.11, в маніпуляторі, що містить n  зчленувань, задіяна 

( )1+n  ланка. Зчленування, розташоване між ( )1−i -ю та i -ю ланками 

нумерується як i -те зчленування. Якщо в кожному зі зчленувань встановлено 

свій приводний двигун, то рух робочого органу утворюється завдяки n  кутовим 

(лінійним) переміщенням у кожному із n  зчленувань. 

Основна мета кінематичного аналізу – знайти аналітичний взаємозв’язок 

між переміщеннями у зчленуваннях маніпулятора та координатами робочого 

органу. 

3.2.5 Метод Денавіта-Хартенберга 

Даний метод встановлює кінематичні співвідношення між парою 

взаємодіючих ланок з використанням мінімальної кількості параметрів. 
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 Рисунок 3.11 – Кінематична схема багатоланкового маніпулятора 

2
3
 

Захватний  
пристрій 
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Рисунок 3.12 – Орієнтація систем координат суміжних ланок 

На рис. 3.12 зображені i -та та ( )1−i -ша ланки, а також зв’язані з ними 

зчленування під номерами ( )1−i , i  та ( )1+i . Пряма 
i i

H O  є спільною 

нормаллю до осей i -го та ( )1+i -го зчленувань. Як було показано раніше, 

взаємне розташування двох твердих тіл може бути визначено за допомогою 

двох систем координат, зв’язаних з цими тілами. Метод Денавіта-Хартенберга 

пропонує фіксацію i -го початку координат в точці перетину осі ( )1+i -го 

зчленування та спільної нормалі до осей ( )1+i -го та i -го зчленувань, як 

показано на рис. 3.12. 

Помітимо, що початок координат i -ї ланки зв’язано із ( )1+i -м 

зчленуванням. Вісь 
i

x  цієї системи координат направляється вздовж нормалі 

i i
H O , у той час як вісь 

i
z  − вздовж осі ( )1+i -го зчленування. Напрямок 

i i
O y  

обирається так, щоб система 
i i i i

O x y z  та зв’язані з нею направляючі орти 

утворювали праву трійку векторів. 

Ні-1 
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Взаємне положення двох систем координат 
i i i i

O x y z  та 
1 1 1 1− − − −i i i i

O x y z  

повністю характеризується чотирма параметрами: 

i
a  − довжина спільної нормалі; 

i
d  − відстань між початком координат 

1−i
O  та точкою 

i
H ; 


i
 − кут між віссю i -го зчленування та віссю 

i
z , що визначається по 

правилу правої руки;  


i
 − кут між віссю 

1−i
x  та спільною нормаллю 

i i
H O , що вимірюється 

навколо 
1−i

z  за правилом правої руки. 

Параметри 
i

a  та 
i
 є постійними та визначаються геометрією ланки: 

i
a  − 

довжина ланки, 
i
 − кут закрутки між двома осями зчленувань. Інші два 

параметри змінюються при русі ланок. Для зчленувань обертального типу 

змінним параметром є кут 
i
, що представляє собою кут повороту між i -ю та 

( )1−i -ю ланками, в той час як параметр 
i

d  постійний. У призматичних 

зчленуваннях навпаки, параметр 
i

d  є змінюваним, а 
i
 − постійним. 

На рис. 3.13 зображені системи координат 
i i i i

O x y z  та 
1 1 1 1− − − −i i i i

O x y z , а 

також проміжна система відліку ' ' '
i i i i

H x y z , встановлена в точці 
i

H . 

 

Рисунок 3.13 – Проміжна система координат для метода Денавіта-Хартенберга 
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Нехай x
i
, 'x  та 

1−
x

i
 будуть чотиривимірні вектори в системах координат 

i i i i
O x y z , ' ' '

i i i i
H x y z  та 

1 1 1 1− − − −i i i i
O x y z  відповідно. 

З рис. 3.13 знаходимо перетворення від x
i
 до 'x  

 ' =x A x
n p

i i
, (3.42) 

де 

 
( ) ( )

( ) ( )

1 0 0

0 c o s s in 0

0 s in c o s 0

0 0 0 1

 

 
 − 

 =
  

 

 

A

i

i in p

i

i i

a

. (3.43) 

Аналогічно перехід від 'x  до 
1−

x
i

 задається виразом 

 1

1
'

−

−
=x A x

i

i n p
, (3.44) 

де 

 

( ) ( )

( ) ( )1

c o s s in 0 0

s in c o s 0 0

0 0 1

0 0 0 1

−

  − 

 
 

 =
 

 

 

A

i i

i i i

n p

i
d

. (3.45) 

Об’єднавши рівняння (3.42) та (3.44), отримаємо 

 1 1

1

− −

−
= =x A A x A x

i n p i

i n p i i i i
, (3.46) 

де  

 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1

c o s s in c o s s in s in c o s

s in c o s c o s c o s s in s in

0 s in c o s

0 0 0 1

−

  −     

 
   −   

 =
  
 

 

A

i i i i i i i

i i i i i i i i

i

i i i

a

a

d

 (3.47) 

Матриця 1−
A

i

i
 визначає положення та орієнтацію i -ї системи координат 

відносно ( )1−i -ї. Перші три вектори цієї матриці – стовпчики розмірністю 3х1 

представляють собою направляючі косинуси координатних осей системи i , в 

той час як останній вектор − стовпчик 3х1 визначає положення початку 

координат 
i

O . 
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3.2.6 Застосування метода Денавіта-Хартенберга 

Використовуючи розглянутий в попередньому розділі метод, знайдемо 

просторове положення робочого органу як функцію кутових переміщень у 

зчленуваннях маніпулятора. 

Будемо вважати, що = 
i i

q  для обертального руху та =
i i

q d  для 

поступального руху. 

У відповідності з (3.47) положення та орієнтація i -ї ланки відносно 

( )1−i -ї описується як функція 
i

q  за допомогою матриці ( )
1−

A
i

i i
q  розмірністю 

4х4. 

Застосовуючи n  послідовних перетворень координат вздовж з’єднання 

( )1+n  ланок маніпулятора, як показано на рис. 3.14, отримаємо положення 

робочого органу відносно базової системи координат. У відповідності з (3.39) 

знайдемо матрицю послідовних перетворень 

 ( ) ( ) ( ) ( )
0 1 1 1

1 1 2 2
. . . . . .

− −
=    T A A A A

i n

i i n n
q q q q . (3.48) 

Рівняння (3.48) забезпечує функціональний взаємозв’язок між 

положенням та просторовою орієнтацією останньої ланки, а також кутовими 

переміщеннями у кожному із зчленувань маніпулятора ( )1 2
, , ,

n
q q q  відносно 

базової системи координат 
0 0 0 0

O x y z  (рис. 3.14). 

Рівняння (3.48) задає так звану задачу прямої кінематики, що 

заключається у знаходженні матриці T , яка визначає координати робочого 

органу маніпулятора та його орієнтацію відносно нерухомої системи 

координат, на основі значення узагальнених координат 
i

q  для всіх ланок. 

Існує декілька винятків із правил використання метода Денавіта-

Хартенберга. Так, для кожної ланки необхідно знайти спільну нормаль до осей 

двох зчленувань. Але такої спільної нормалі для базової та останньої ланок не 

існує, оскільки вони мають лише по одному зчленуванню. Для цих двох ланок 

системи координат визначаються наступним чином. 
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Рисунок 3.14 – Маніпулятор, що складається з послідовно з’єднаних n  ланок 

У випадку останньої ланки початок системи координат може бути 

встановлено в будь-якій точці робочого органу, як показано на рис. 3.15. 

Орієнтація системи координат повинна бути вибрана таким чином, щоб вісь 
n

x  

перетинала вісь n -го зчленування, утворюючи правий кут. Кут 
n
 обирається 

довільно. 

Для базової ланки початок системи координат 
0 0 0 0

O x y z  встановлюється 

довільно на осі першого зчленування, як показано на рис. 3.16. Напрямок осі 
0

z  

повинен бути паралельним осі зчленування, а орієнтація осей 
0

x  та 
0

y  довільна. 

Існує також два винятки для проміжних ланок. У тому випадку, коли дві 

осі зчленувань проміжних ланок паралельні, спільна нормаль не єдина, тоді її 

вибір довільний. За звичай обирається нормаль, що проходить через точку 
1−i

O  

(див. рис. 3.12), тоді відстань 
i

d  стає рівною нулю. Для призматичних 

зчленуваннь тільки напрямок осі є істотним, тому її розташування може бути 

вибраним довільно. 
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Рисунок 3.15 – Вибір орієнтації системи координат для останньої ( n -ї) ланки 

3.2.7 Пряма задача кінематики для дволанкового маніпулятора 

Сформулюємо пряму задачу кінематики для дволанкового маніпулятора, 

кінематична схема якого зображена на рис. 3.17. Маніпулятор представляє 

собою розімкнений кінематичний ланцюг із двома ступенями свободи, що 

містить два зчленування, що обертаються. Маніпулятор повністю знаходиться в 

одній площині, що дає можливість стверджувати, що аплікати всіх ланок 

маніпулятора тотожньо дорівнюють нулю, тобто: 

 0 z .  

Пряма задача кінематики вирішує задачу знаходження координат 

робочого органу маніпулятора ( )=x
T

x y  по заданим його узагальненим 

координатам ( )1 2
=  q

T

, де x  та y  абсциса та ордината робочого органу, 
1

  та 

2
  кутові положення першої та другої ланок маніпулятора. 

У відповідності з методом Денавіта-Хартенберга на рис. 3.17 зафіксовані 

системи координат: 
0 0 0 0

O x y z  − зв’язана з базовою ланкою, 
1 1 1 1

O x y z  − зв’язана з 

першою ланкою та 
2 2 2 2

O x y z  − зв’язана з третьою ланкою. Кут 
1

  відраховується 

між осями 
0

x  та 
1

x  проти годинникової стрілки, кут 
2

  − між 
1

x  та 
2

x . 

Параметри матриць перетворення 0

1
A  та 1

2
A  наведено у табл. 3.1. 

0 
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Рисунок 3.16 – Вибір орієнтації системи координат для базової ланки 

Таблиця 3.1 – Параметри матриць перетворення 

№ ланки ( i ) 
i
 

i
a  

i
d  

i
q  

1 0 
1

l  0 
1

  

2 0 
2

l  0 
2

  

Використовуючи дані таблиці, а також вираз (3.47), матриці перетворень 

0

1
A  та 1

2
A  можна записати у вигляді 

 

( ) ( ) ( )

( ) ( ) ( )

1 1 1 1

0 1 1 1 1

1

c o s s in 0 c o s

s in c o s 0 s in

0 0 1 0

0 0 0 1

 −   

 
  

 =
 

 

 

A

l

l
, (3.49) 

 

Х1 
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Рисунок 3.17 – Кінематична схема дволанкового маніпулятора 

 

( ) ( ) ( )

( ) ( ) ( )

2 2 2 2

1 2 2 2 2

2

c o s s in 0 c o s

s in c o s 0 s in

0 0 1 0

0 0 0 1

 −   

 
  

 =
 

 

 

A

l

l
. (3.50) 

У відповідності з (3.48) матриця перетворення T  буде мати вигляд 

 ( ) ( ) ( )
0 1 0 0 1 1

1 2 1 2
; ; ; , 1, 2 , 3 , 4 ; 1, 2 , 3 , 4 .= = = =  = =T A A A A T

i j i j i j
a a i j  (3.51) 

Тоді координати робочого органу в базовій системі відліку можна 

визначити, розв’язавши рівняння 

 

1 1 1 2 1 3 1 40 2

2 1 2 2 2 3 2 40 2

3 1 3 2 3 3 3 40 2

4 1 4 2 4 3 4 4
1 1

       

    
   

    =
       

    
       

x x

y y

z z
. (3.52) 

 
θ1  θ2 

Захватний  
пристрій 
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Оскільки координати робочого органу співпадають з початком другої 

системи координат 
2

O , то вектор ( )2
0 0 0 1=x

T

, тоді 

 
0 1 4 0 2 4 0

; ; 0=  =  =x y z . (3.53) 

Із формули множення матриць 
0 1

1=

 = 

n

ij ik k j
k

a a  знайдемо 

 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

4
0 1

1 4 1 1 2 1 2 2 1 2
1

4
0 1

2 4 2 4 1 1 2 2 1 2 2 1
1

c o s c o s c o s s in s in ,

s in c o s s in s in c o s .

=

=

 =  +   −  

 = =  +   +  

ik k j
k

k k
k

a a l l l

a a l l l

 (3.54) 

Виконавши тригонометричні перетворення, отримаємо: 

 
( ) ( )

( ) ( )

0 1 1 2 1 2

0 1 1 2 1 2

c o s c o s ,

s in s in .

=  +  + 

=  +  + 

x l l

y l l

 (3.55) 

3.3 Обернена задача кінематики 

Кінематичні рівняння, розглянути у попередньому розділі, встановлюють 

взаємозв’язок між узагальненими координатами та просторовим положенням 

робочого органу маніпулятора. 

При керуванні роботом завжди необхідно вирішувати задачу: яким чином 

вивести робочий орган маніпулятора в задану точку простора, тобто знайти 

значення узагальнених координат, які забезпечать необхідне положення та 

орієнтацію робочого органу. 

Ця задача є оберненою до попередньої і називається оберненою задачею 

кінематики. 

Задача прямої кінематики має єдине рішення для будь-якого набору 

узагальнених координат. Навпаки, фіксованому положенню робочого органу 

може відповідати сукупність узагальнених координат. Рішення задачі оберненої 

кінематики в загальному випадку зводиться до розв’язання системи нелінійних 

тригонометричних рівнянь з великою кількістю тригонометричних функцій. 

Тому отримання рішення в замкненій формі, яке б являло собою обернену 

функцію рівнянь кінематики, не завжди можливо. 
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Досить часто ефективний розв’язок задачі оберненої кінематики 

можливий лише чисельними методами. Можуть також існувати області, які для 

даної конструкції маніпулятора недосяжні при будь-яких наборах узагальнених 

координат. 

В загальному випадку для характеристики положення робочого органу 

кількість узагальнених координат робочого органу задається рівною шести, 

тобто 6=m . Наприклад, три координати деякої точки робочого органу та три 

кути, що характеризують орієнтацію системи координат, жорстко зв’язаної із 

робочим органом, відносно базової системи відліку. 

Визначення вектора узагальнених координат ( )
1
, ,=q

T

n
q q , де n  − 

кількість узагальнених координат, по заданим координатам робочого органу 

можливе, якщо =n m  (умова необхідна, але недостатня). 

При n m  рішення у загальному вигляді відсутнє. Його можна отримати, 

якщо задати довільно ( )−m n  узагальнених координат. 

При n m  обернена задача розв’язується неоднозначно. В таких 

випадках маніпулятор має надлишкові ступені рухомості, які дозволяють 

маніпулятору працювати в середовищі з перепонами. 

Як уже було сказано раніше, рішення оберненої задачі досить часто 

здійснюється в чисельному вигляді. Але для випадку дволанкового 

маніпулятора існує рішення в аналітичній формі. 

Координати робочого органу в базовій системі відліку визначаються 

рівняннями 

 ( ) ( ) ( )
0 1

0 1 2 2 1 1 2 2
, ;=   =  x T x T A A . (3.56) 

Помножимо ліву та праву частину рівняння (3.56) на ( ) 
1

0

1 1

−

A : 

 ( )  ( )
1

0 1

1 1 0 2 2 2

−

 = A x A x . (3.57) 

Слід звернути увагу на те, що ліва частина рівняння (3.57) залежить лише 

від узагальненої координати 
1

 , а права − лише від 
2

 . При цьому: 



  34 

 

 ( ) 

( ) ( )

( ) ( )

1 1 1

1
0 1 1

1 1

c o s s in 0

s in c o s 0 0

0 0 1 0

0 0 0 1

−

  − 

 
−  

  =
 

 

 

A

l

. (3.58) 

Враховуючи (3.58) за умови 
0

0=z , у спрощеному виді вираз (3.57) має 

вигляд 

 

( ) ( )

( ) ( )

( )

( )

0 1 0 1 1 2 2

0 1 0 1 2 2

c o s s in c o s

s in c o s s in

0 0

1 1

 +  −    

   
−  +  

   =
   

   

   

x y l l

x y l
, (3.59) 

а у розгорнутому вигляді: 

 
( ) ( ) ( )

( ) ( ) ( )

0 1 0 1 1 2 2

0 1 0 1 2 2

c o s s in c o s ,

s in c o s s in .

 +  − = 

−  +  = 

x y l l

x y l

 (3.60) 

Перенесемо у першому рівнянні системи (3.60) 
1

l  в праву частину і 

піднесемо це рівняння до квадрату, в результаті чого отримаємо 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2 2

0 1 0 1 0 0 1 1 2 2 1 1 2 2
c o s s in 2 c o s s in c o s 2 c o s +  +   =  + + x y x y l l l l . 

Тепер піднесемо до квадрату друге рівнянні системи (3.60) 

( ) ( ) ( ) ( ) ( )
2 2 2 2 2 2

0 1 0 2 0 0 1 1 2 2
s in c o s 2 s in c o s s in +  −   = x y x y l . 

Додамо отримані рівняння, враховуючи відому тригонометричну 

залежність ( ) ( )
2 2

c o s s in 1 +  = . В результаті отримаємо 

 ( )
2 2 2 2

0 0 1 2 1 2 2
2 c o s+ = + + x y l l l l . (3.61) 

З виразу (3.61) знаходимо 
2

  

 
2 2 2 2

0 0 1 2

2

1 2

a rc c o s
2

 + − −
 =  

 

x y l l

l l
. .(3.62) 

Фактично рівняння (3.62) є рішенням оберненої задачі кінематики 

відносно узагальненої координати 
2

 . Для її рішення відносно 
1

  необхідно 
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друге рівняння системи (3.60) поділити на перше, потім поділити чисельник та 

знаменник лівої частини рівняння на ( )1
c o s  . Після перетворень отримаємо 

( )

( )

( )

( )

0 1 0 2 2

0 0 1 2 2 1

tg s in

tg c o s

−  + 
=

+   +

x y l

x y l l
. 

Зробивши прості перетворення, виділимо 
1

  

 
( )( ) ( )

( )( ) ( )( )

0 1 2 2 0 2 2

1

0 2 2 0 1 2 2

c o s s in
a rc tg

s in c o s

 +  − 
 =  

  + + 
 

y l l x l

y l x l l
. (3.63) 

Рівняння (3.63) є рішенням оберненої задачі кінематики відносно 

узагальненої координати 
1

 . 

Вирази (3.62) та (3.63) вказують на те, що існує два рішення задачі 

оберненої кінематики в залежності від того, в якому квадранті вибрано 

значення 
2

  із (3.62). 

Для знаходження залежностей узагальнених координат від часу 

необхідно в (3.62) та (3.63) підставити залежності ( )x t  та ( )y t , що отримані на 

етапі проектування траєкторії руху в розділі 3.2. Для фігури, що розглядається 

(рис. 3.1), та розрахованих залежностей, що показані на рис. 3.6, рішення 

зворотної задачі кінематики зображено на рис. 3.18. 

 

а)     б) 

Рисунок 3.18 – Кутова координата: а) першої ланки ( )1
 t , б) другої ланки ( )2

 t  



  36 

 

3.4 Обернена швидкісна задача 

Після знаходження ( )1 2
,=  q

T

 із ( )
0 0
,=x

T

x y  в ході рішення задачі 

оберненої кінематики, наступним кроком розрахунку маніпулятора є 

встановлення взаємозв’язку між швидкостями у зчленуваннях та швидкостями 

в робочому органі. Виходячи із рішення прямої задачі кінематики, можна 

помітити, що координати ( )0 0
,x y  є функціями одночасно двох змінних 

1
  та 

2
 , тобто 

( ) ( )0 1 2 0 1 2
, , ,=   =  

x y
x f y f . 

Для знаходження відповідних швидкостей 
x

v  та 
y

v  необхідно мати 

елементарні прирости координат робочого органу дволанкового маніпулятора 

по функціональним змінним: 

 

( ) ( )

( ) ( )

1 2 1 2

1 2

1 2

1 2 1 2

1 2

1 2

, ,

, ,

     
=  + 

   

     
=  + 

   

x x

y y

f f
d x d d

f f
d y d d

 (3.64) 

Визначивши вектори 

 ( ) ( )1 2
,, , = = x q

T T

dd d x d y d d , (3.65) 

отримаємо: 

 

( ) ( )

( ) ( )

1 2 1 2

1 2

1 2 1 2

1 2

, ,

, ,

      

 
   

 
=
      
 
 

    

x q

x x

y y

f f

d d
f f

. (3.66) 

Матриця часткових похідних від кінематичного рівняння у виразі (3.66) 

традиційно називається Якобіаном маніпуляційної системи. Поділивши праві 

та ліві частини рівняння (3.66) на d t , отримаємо рівняння, що встановлює 

взаємозв’язок між швидкостями у зчленуваннях та робочому органі: 

 =  =
x q

J v J ω
d d

d t d t
, (3.67) 
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де ( ),=v
T

x y
v v , ( )

1 2

1 2
, ,

  
= =   
 

ω

T

Td d

d t d t
; 

1
 , 

2
  – узагальнені швидкості 

(кутові швидкості у зчленуваннях). 

Слід звернути увагу, що Якобіан представляє собою функціональну 

матрицю. В нашому випадку він залежить від конфігурації маніпулятора, тобто 

узагальнених координат 
1

  та 
2

 . При цьому кожен вектор-стовпчик Якобіана 

представляє собою швидкість робочого органу, яка генерується швидкістю в 

даному зчленуванні при нерухомих інших зчленуваннях. 

У тих точках, де Якобіан дорівнює нулю, конфігурація маніпулятора буде 

виродженою. 

Для дволанкового маніпулятора, що має кінематичне рівняння (3.55), 

Якобіан має вигляд 

 
( ) ( )( ) ( )

( ) ( ) ( )

1 2 1 2 2 1 2

1 1 2 1 2 2 1 2

s in s in s in

c o s c o s c o s

 −  +  +  −  + 
=  
  +  +   + 
 

1

J
l l l

l l l

. (3.68) 

З (3.67) знаходимо рішення оберненої швидкісної задачі кінематики 

 1−
= =q J vω . (3.69) 

Питанням її розв’язання займається інверсна кінематика швидкісного 

руху. Головним обмеженням є те, що рівняння (3.69) має рішення тільки якщо 

d e t 0J  для всіх q . Якщо в будь-якій з точок Якобіан вироджений, то в цій 

точці рух робочого органу із заданою швидкістю не може бути забезпечений ні 

при якому значенні швидкостей у зчленуваннях. 

Розв’яжемо рівняння (3.69) для дволанкового маніпулятора. Виходячи із 

(3.68) маємо: 

 
( )

( ) ( )

( ) ( )( ) ( ) ( )( )

2 1 2 2 1 21

1 1 2 1 2 1 1 2 1 21 2 2

c o s s in1
.

c o s c o s s in s ins in

−
  +   +  

=  
 −  +  +  −  +  + 
 

J
l l

l l l ll l
(3.70) 

 
( )

( ) ( )( )1 1 2 1 2 2 1 2

1 2 2

1
c o s s in

s in
 =  =  +  +  + 


x y

v l v l
l l

, (3.71) 
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 ( )
( ) ( )( )(

( ) ( )( ) )

2 2 1 1 2 1 2

1 2 2

1 1 2 1 2

1
c o s c o s

s in

s in s in .

−
 =  =  +  +  +



+   +  + 

x

y

v l l
l l

v l l

 (3.72) 

Отже, для знаходження ( )1
 t  та ( )2

 t  необхідно знати ( )1
 t  та ( )2

 t  при 

русі із заданим графіком швидкості, тобто 
x

v  та 
y

v . 

В точках, де конфігурація маніпулятора буде наближатися до точки 

виродження – параметри 
1 2
,   будуть прямувати до нескінченності. По 

технологічним причинам вони не можуть бути відпрацьованими. 

Для дволанкового маніпулятора єдиний параметр, що впливає на d e t J  є 

2
 . При 

2
0 , , . . . , , 0 , 1, 2 , . . . , =   = n n  конфігурація маніпулятора – є 

виродженою. Графіки узагальнених швидкостей ( )1
 t  та ( )2

 t  для 

відпрацювання заданої фігури (рис. 3.1) отримані за допомогою виразів (3.71), 

(3.72) показані на рис. 3.19. 

 

а)     б) 

Рисунок 3.19 – Задані кутові швидкості а) першої ланки 
1

 , б) другої ланки 
2

  

3.5 Перевірка розв’язку оберненої задачі кінематики 

Рішення зворотної задачі кінематики потребує перевірки за допомогою 

кінематичного рівняння (3.55). Така потреба виникає в зв‘язку з 

неоднозначністю визначення зворотних тригонометричних функцій в (3.62), 

(3.63). 
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Залежності ( )1
 t  та ( )2

 t  використовуються в (3.55) для розрахунку 

координат робочого органу ( )x t , ( )y t , на їх основі отримується первинна 

фігура відпрацювання, що показана на рис. 3.20. 

3.6 Динамічна модель дволанкового маніпулятора 

Для виводу рівнянь динаміки дволанкового маніпулятора використаємо 

рівняння Ейлера-Лагранжа (рівняння Лагранжа другого роду). 

Запишемо рівняння Ейлера-Лагранжа в загальному вигляді: 

 
       

− + =     
       

K K n

i

i i i

d E E E
Q

d t q q q
, (3.73) 

де 
K

E , 
n

E  – повна кінетична і потенційна енергія системи відповідно; 

i
q  – узагальнені координати (в нашому випадку 

1
  і 

2
 ); 

i
q  – узагальнені швидкості (в нашому випадку 

1
  і 

2
 ); 

i
Q  – узагальнені сили або моменти (в нашому випадку М1, М2). 

Перепишемо рівняння Ейлера-Лагранжа (3.73) у вигляді: 

 
       

− = − +     
       

K K n

i

i i i

d E E E
Q

d t q q q
. (3.74) 

Відомо, що функція Лагранжа являє собою різницю повних кінетичної і 

потенційної енергії системи. Дволанковий маніпулятор виконує обертальний 

рух, тому для знаходження кінетичної енергії у розгляд приймається момент 

інерції J. 

Для визначення моменту інерції J використаємо теорему Штейнера, яка 

має наступне формулювання:  

Момент інерції відносно деякої осі дорівнює сумі моменту інерції 

відносно паралельної осі і маси, помноженої на квадрат відстані між ними, 

тобто : 

 J = J` + ml2
. (3.75) 

Також необхідно враховувати вплив сили Коріоліса, оскільки вона діє на 

тіло яке здійснює поступальний рух в системі координат, що обертається: 
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  2=   
K

f m . (3.76) 

На основі вищевикладеного знайдемо повну кінетичну енергію системи: 

 
1 2 3 4

= + + +
K K K K K

E E E E E , (3.77) 

де 
1K

E  – власна кінетична енергія першої ланки; 

2K
E  – кінетична енергія другої ланки при обертанні першої ланки;  

3K
E  – кінетична енергія другої ланки при обертанні з власною швидкістю 

і нерухомою першою ланкою; 

4K
E  – кінетична енергія другої ланки при обертанні другої ланки при 

обертанні разом з першою ланкою. 

Власна кінетична енергія першої ланки дорівнює: 

 ( )
2 2

1 1 1 1 1

1

2
= + 

K c
E m l J . (3.78) 

Кінетична енергія другої ланки при обертанні першої ланки: 

 ( )
2 2 2

2 2 1 2 1 2 2 2 1

1
2 c o s

2

 = + +  + 
 K c c

E m l l l l J . (3.79) 

Кінетична енергія другої ланки при обертанні з власною швидкістю і 

нерухомою першою ланкою: 

 
2 2

3 2 2 2 2

1

2
 = + 
 K c

E m l J . (3.80) 

Кінетична енергія другої ланки при обертанні другої ланки разом із 

першою ланкою: 

 
2

4 2 2 2 1 2 2 2 1 2
c o s = +  +  

 K c c
E m l m l l J . (3.81) 

Перепишемо рівняння (3.77) з урахуванням (3.78) – (3.81): 

 
( ) ( )

2 2 2 2 2 2

1 1 1 2 1 2 1 2 2 2 1 2 2 2 2

2

2 2 2 1 2 2 2 1 2

1 1
2 c o s

2 2

c o s .

   = + + + +  +  + +  +
  

 + +  +  
 

K c c

c c

E m l J m l l l l J m l J

m l m l l J

 (3.82) 

Знайдемо часткові похідні від кінетичної енергії по 
1 2 1 2

, , ,    : 
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1

0


=
 

K
E

 

( ) ( )2 1 2 2 1 1 2

2

s in


= −    + 


K

c

E
m l l  

1


=



K
E

(m1l
2

c1 + J1 + m2(l
2

1 + l2
c2 + 2l1lc2cos2) + J2) 1

 +  

+ (m2l
2

c2 + J2 + m2l1lc2cos2) 2
  

2


=



K
E

(m2l
2

c2 + J2) 2
  + (m2l

2
c2 + J2 + m2l1lc2cos2) 1

  

Похідні по часу від 
1





K
E

 і 
2





K
E

 мають наступний вигляд: 

 

2 2 2

1 1 1 2 1 2 1 2 2 2

1

2

2 2 2 2 1 2 2 2 1 2 2 2 1 2 2

( ( 2 c o s ) )  

( c o s )   ( 2 s in )   ( s in ) ,

 
= + + + +  + + 

  

+ + +  −  − 

K

c c c

c c c c

d E
m l J m l l l l  J

d t

 m l J m l l m l l m l l

 (3.83) 

 
2

 
= 

  

K
d E

d t
(m2l

2
c2 + J2) 2

  + (m2l
2

c2 + J2 + m2l1lc2cos2) 1
  - (m2l1lc2sin2) 1 2

  . 

Тепер знайдемо повну потенційну енергію системи: 

 
1 2

= +
п п п

E E E , (3.84) 

де 
1п

E  – потенційна енергія першої ланки; 

2п
E  – потенційна енергія другої ланки; 

Потенційна енергія першої ланки:  

 
1 1 1 1

s in= 
п c

E g m l . (3.85) 

Потенційна енергія другої ланки:  

 ( )2 2 1 1 2 1 2
s in s in ( )=  +  + 

п c
E g m l l , (3.86) 

де g = 9.81 – прискорення вільного падіння, яке діє вздовж від’ємного напрямку 

осі Y. 

Перепишемо рівняння (3.84) з урахуванням (3.85) і (3.86): 

 ( )1 1 1 2 1 1 2 1 2
s in s in s in ( ) =  +  +  + 

 п c c
E g m l m l l . (3.87) 
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Часткові похідні від потенційної енергії по 
1 2

,   записуються у вигляді:  

 ( )
1 1 1 2 1 1 2 1 2

c o s c o s c o s ( )


 =  +  +  + 
 

 

п

c c

1

E
g m l m l l , (3.88) 

 
2 2 1 2

2

c o s ( )


=  + 


п

c

E
g m l . (3.89) 

Підставивши отримані складові кінетичної та потенційної енергії (3.83), 

(3.88), (3.89) у вихідне рівняння (3.73), з урахуванням математичних 

перетворень, отримаємо рівняння, що описують динаміку дволанкового 

маніпулятора: 

 

 

( )( )

2 2 2 2

1 1 1 1 2 1 2 1 2 2 2 2 2 2

2 1 2 2 2 1 2 2 2 1 2 2

1 1 1 2 1 1 2 1 2

[ ( 2 c o s ) ]   [

c o s ]   [ 2 s in ]   [ s in ]  

c o s c o s c o s ,

= + + + +  + + + +

+  −  −  +

 +  +  +  + 
 

c c c c

c c c

c c

M  m l  J  m l l l l J m l J

 m l l m l l m l l

g m l m l l

 (3.90) 

 

2 2

2 2 2 2 2 2 2 2 1 2 2 2 1 2 2

2 2 1 2

  [ c o s ]   [ s in ]

c o s ( ) .

 = + + + +  +  +
 

+  + 

c c c c

c

M m l J  m l J m l l m l l

g m l

 (3.91) 

Для спрощення отриманих виразів (3.90) і (3.91) введемо наступні 

позначення: 

 

( )

( )

( )

2 2 2

1 1 2

2

2

2

2

,

,

,

,

,

.

= 

=

= 

= 

=   +   
 

=  + 

1 1 1 c 1 2 1 c 2 2 2

2 2 2 c 2

1 2 2 2 1 c 2 2 2

2 1 c 2 2

1 1 c 1 1 2 c 2 1 2 1 1

2 2 c 2 1 2

H  m l + J + m l +  l +  2 l l c o s + J

H m l + J

H m l + J + l l m c o s

h m l l s in

G m l g  c o s + m g l c o s + l c o s

G g m l c o s

 (3.92) 

З урахуванням введених позначень рівняння (3.90) і (3.91) остаточно 

набудуть вигляду: 

 

2

1 1 1 1 1 2 2 2 1 2 1

2

2 2 2 2 1 2 1 1 2

      2   ,

      .

=  +  −  −   +

=  +  +  +

M H  H  h  h  G

M H  H  h  G

 (3.93) 
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Перепишемо (3.93) в наступному вигляді : 

 

2

1 1 1 1 2 2 1 2 1 2 1

2

2 2 2 1 2 1 2 1 2

    2 ,

      .

 +  = +  +   −

 +  = −  −

H  H M  h h G

H  H M  h G

 (3.94) 

Діві частини перепишемо в матричній формі і виконаємо заміну  = 
i i

, 

де i=1,2: 

 
2

1 1 1 2 1 1 2 1 2 1

2

1 2 2 2 1 2 1 2

2  +  +   −   
=    

 −  −     

H H M h h G

H H M h G
. (3.95) 

Тоді із (3.95) отримаємо рівняння динаміки дволанкового маніпулятора в 

векторній формі: 

 

1
2

1 1 1 1 2 1 2 1 2 1

2

1 1 2 2 2 2 1 2

2
−

  +  +   −   
=     

 −  −     

H H M h h G

H H M h G
 (3.96) 

Враховуючи, що  

 

1

1 1 1 2 2 2 1 2

2

1 2 2 2 1 2 1 11 1 2 2 1 2

1
−

−   
=   

−−   

H H H H

H H H HH H H
 (3.97) 

Тоді рівняння (3.96) в скалярному вигляді можуть бути представлені як 

 

( ) ( )( )

( ) ( )( )

2 2

1 2 2 1 2 1 2 1 1 2 2 1 22

1 1 2 2 1 2

2 2

2 1 2 1 2 1 2 1 1 1 2 1 22

1 1 2 2 1 2

1
2

1
2

 = +  +   − − −  −
−

 = − +  +   − + −  −
−

H M h h G H M h G
H H H

H M h h G H M h G
H H H

 (3.98) 

З урахуванням моментів інерції двигунів,  

 

' 2

1 1 1 1 1 1

' 2

2 2 2 2 2 2

,

.

= +

= +

д

д

H H n J

H H n J

 (3.99) 

Враховуючи, що 
1 2

H  набагато менше порівняно із 
1 1

H  і 
2 2

H , то його 

значенням можна знехтувати. Тобто вважаємо, що 
1 2

0=H . 

Тоді визначивши моменти збурення на валу кожного двигуна у вигляді  

 

2

1 1 2 1 2

2

2 2 1

2 ,= −  −     

= + 

В

В

M G h h

M G h

 (3.100) 
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отримаємо рівняння динаміки дволанкового маніпулятора з урахуванням 

введених припущень 

 ( )

( )

1 1

2 2

1 1 1

1 1

2 2 2

2 2

,

,

1
,

1
,

 = 

 = 

 = −

 = −

В

В

M M
H

M M
H

 (3.101) 

де H11 = m1l
2

c1 + J1 + m2 (l
2
1 + l2

c2 + 2l1lc2cosθ2) + J2+
2

1 1д
n J  

H22 = m2 l
2

c2 + J2+
2

2 2д
n J  

1 1 1
=

д
M n M  

2 2 2
=

д
M n M  

3.7 Розрахунок параметрів динамічної моделі маніпулятора 

Для розрахунку довжин першої і другої ланок маніпулятора 
1

l  і 
2

l  

відповідно, необхідно спочатку знайти відстань від початку координат до 

найвіддаленішої точки траєкторії L . Тоді, прийнявши 
1 2
=l l  і ввівши 

коефіцієнт запасу на довжину ланок отримаємо 

 
( )

1 2

1 .2 1 .3

2


= =

L
l l . 

Відстань від осей ланок до їх центрів мас розраховується наступним 

чином 

 1

1
,

2
=

c

l
l  

 2

2

2
=

c

l
l . 

Маси ланок маніпулятора можуть бути обчислені наступним чином 

 ,
 

2

1

1

l d
m =

4
 

 
 

2

2

2

l d
m =

4
. 
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Розглядаючи ланки маніпулятора, як суцільні циліндри, їхні моменти 

інерції відносно осі, що проходить через центр мас перпендикулярно до осі 

симетрії можуть бути обчислені наступним чином [3] 

 ,
4

 

 
 

2 2

1 1

1

m l d
J = +

3 4
 

 .
4

 

 
 

2 2

2 2

2

m l d
J = +

3 4
 

Оскільки величина моменту інерції 
1 1

H  в (3.101) залежить від кута 

повороту другої ланки 
2

 , то для синтезу алгоритму керування визначимо 

діюче значення 
1 1

H  за період відпрацювання заданої траєкторії 
1 1

H . Тоді 

замінивши 
1 1

H  на 
1 1

H  отримаємо рівняння руху ланок маніпулятора які не 

залежать одне від одного. 

3.8  Проектування регулятора відпрацювання координат маніпулятора 

на основі концепції локальних регуляторів 

З рівнянь динаміки дволанкового маніпулятора (3.101), в силу прийнятих 

припущень, бачимо, що керування є розв’язаним, тобто індивідуальне для 

кожної ланки і не впливає при цьому на іншу ланку, на відміну від не 

спрощеної моделі. Тому алгоритм керування можна проектувати для кожного 

з’єднання окремо як для одномасового об’єкту.  

Використовуючи стандартну процедуру проектування алгоритмів 

керування для об’єктів цього класу, з урахуванням того, що моменти збурення є 

відомими, отримаємо наступні алгоритми керування моментами привідних 

двигунів. 

При позиційному керуванні алгоритм має наступний вигляд [4], [5]: 

 
( )( )

( )( )

*

1 1 1 1 1 1

*

2 2 2 2 2 2

,

,

 

 

= −  −  − 

= −  −  − 

д

д

M H K K

M H K K

 (3.102) 

де 2

0
= K  і 

0
2 , 1


=   =K . 
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При 
0

5 0 =
р а д

с
: 2

0
= K =502=2500 і 

0
2 2 1 5 0 1 0 0


=  =   =K , а при 

0
1 0 0 =

р а д

с
: 2

0
= K =1002=104 і 

0
2 2 1 1 0 0 2 0 0


=  =   =K ; 

При позиційно-контурному керуванні рівняння алгоритму керування 

мають наступний вигляд [6], [7]: 

 
( ) ( )( )

( ) ( )( )

* *

1 1 1 1 1 1 1

* *

2 2 2 2 2 2 2

,

.

  

  

= −  −  −  −  −

= −  −  −  −  −

i

i

д

д

M H K K K x

M H K K K x

 (3.103) 

3.9  Дослідження динамічних процесів відпрацювання заданих 

траєкторій для позиційного і позиційного контурного керування 

Дослідження динамічних процесів відпрацювання заданих траєкторій для 

позиційного і позиційно-контурного керування виконується для двох значень 

власної частоти недемпфованих коливань 
0

5 0 =
р а д

с
 і 

0
1 0 0 =

р а д

с
 для повної 

динамічної моделі дволанкового маніпулятора (3.98) і для спрощеної моделі 

(3.101) при 
1 2

0= =
В В

M M . Для виконання дослідження в програмному пакеті 

Matlab/Simulink по рівнянням (3.98) та (3.101) складаються повна і спрощена 

динамічні моделі дволанкового маніпулятора.  

Модель системи у середовищі Matlab Simulink, що використовується для 

дослідження динамічних процесів при відпрацюванні траєкторії, представлено 

на рис. 3.20. 

Блоки, які реалізують алгоритми позиційного і позиційно-контурного 

керування складаються по рівнянням (3.102) і (3.103) відповідно. Їхні моделі 

представлено на рис. 3.21 і рис. 3.22 відповідно. 

Виконаємо дослідження динамічних процесів відпрацювання заданих 

траєкторій при використанні алгоритму позиційного керування для наступної 

заданої траєкторії руху робочого органу маніпулятора (див. рис. 3.23) при 

використанні повної динамічної моделі дволанкового маніпулятора для частоти 

власних недемпфованих коливань 
0

5 0 =
р а д

с . 
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Рисунок 3.20 – Модель системи керування дволанкового маніпулятора у Simulink 

 

Рисунок 3.21 – Модель блоку, який реалізує алгоритм позиційного керування 
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Рисунок 3.22 – Модель блоку, який реалізує алгоритм позиційно-контурного 

керування 

Результати дослідження представляються у вигляді графіків наступних 

змінних: 

− задані траєкторії кутових положень першої та другої ланок маніпулятора 

* *

1 2
,   відповідно, а також помилки їх відпрацювання 

* *

1 1 1 2 2 2
, =  −   =  −   (рис. 3.24); 

− задані траєкторії кутових швидкостей першої та другої ланок 

маніпулятора * *

1 2
,   відповідно, а також помилки їх відпрацювання 

* *

1 1 1 2 2 2
, =  −   =  −   (рис. 3.25); 

− задані траєкторії робочого органу маніпулятора по осям *
x  та *

y  

відповідно, а також помилки їх відпрацювання * *

1 1 1 2 2 2
,= − = −x x x x x x  

(рис. 3.26); 

− траєкторія руху робочого органу маніпулятора (рис. 3.27). 
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Рисунок 3.23 – Задана траєкторія руху робочого органу маніпулятора 
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Рисунок 3.24 – Задані траєкторії кутових положень та помилки їх 

відпрацювання  
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Рисунок 3.25 – Задані траєкторії кутових швидкостей * *

1 2
,  , а також помилки 

їх відпрацювання 
1 2

,   

0 1 2 3 4
0.4

0.6

0.8

1

1.2

1.4

t, [s]

x
*,

 [
m

]

0 1 2 3 4
0

0.5

1

1.5

t, [s]

y
*,

 [
m

]

0 1 2 3 4
-0.06

-0.04

-0.02

0

0.02

0.04

t, [s]

x
-x

*,
 [

m
]

0 1 2 3 4
-0.1

-0.05

0

0.05

0.1

t, [s]

y
-y

*,
 [

m
]

 

Рисунок 3.26 – Задані траєкторії положення робочого органу маніпулятора 

* *
,x y  та помилки їх відпрацювання ,x y  
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Рисунок 3.27 – Траєкторія руху робочого органу маніпулятора 

Після виконання всіх досліджень виконується аналіз отриманих 

результатів. Максимальні значення помилок відпрацювання заданих траєкторій 

заносяться до порівняльної таблиці (табл. 3.2) 

На основі отриманих даних виконується аналіз якості відпрацювання 

заданих траєкторій при використанні різних алгоритмів керування, а також 

вплив частоти власних недемпфованих коливань. 

На основі порівняння результатів моделювання спрощеної та повної 

динамічної моделі дволанкового маніпулятора робиться висновок про 

можливість використання спрощеної динамічної моделі маніпулятора для 

дослідження роботи дволанкового маніпулятора. 
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Таблиця 3.2 – Порівняльний аналіз максимальних динамічних похибок 

при моделюванні дволанкового маніпулятора. 

Максимальне 

значення 

помилки по  

 

Керування 

x, м y, м 
1
,

р а д
 

2
,

р а д
 

1
,

р а д

с

 

(пік) 

2
,

р а д

с

 

(пік) 

поз. керув. 
0

5 0 =  рад/с       

поз. керув. 
0

1 0 0 =  рад/с       

поз.-конт. керув. 

0
5 0 =  рад/с 

(пікове значення) 

      

поз.-конт. керув. 

0
1 0 0 =  рад/с 

(пікове значення) 
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ДОДАТОК А ВАРІАНТИ ЗАВДАНЬ НА КУРСОВУ РОБОТУ 

Задана фігура на відпрацювання показана на рис. А.1 – рис. А.7. 

Координати вершин фігур подано у таблицях А.1 – А.3. 

У відповідності з номером варіанта необхідно вибрати вид фігури 

відпрацювання та координати її вершин. 

Точка виходу на траєкторію обираються довільно. 
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Рисунок А.1 – Варіанти №1-4 
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 Рисунок А.2 – Варіанти №5-8
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Рисунок А.3 – Варіанти №9-12 
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Рисунок А.4 – Варіант №13-16 
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Рисунок А.5 – Варіант №17-20 
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Рисунок А.6 – Варіанти №21-24
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Рисунок А.7 – Варіант №25-26 

 

Таблиця А.1 – Координат вершин фігур для варіантів № 1-12 

№ варіанта x1 y1 x2 y2 x3 y3 x4 y4 

1, 5, 9 0.3 0.4 1 0.4 1 -0.4 0.3 -0.4 

2, 6, 10 -0.3 0.5 0.5 0.5 0.5 0.1 -0.3 0.1 

3, 7, 11 0 1 1 1 1 -1 0 -1 

4, 8, 12 -0.5 -0.5 0.5 -0.5 0.5 -1.5 -0.5 -1.5 

 

Таблиця А.2 – Координат вершин фігур для варіантів № 13-24 

№ варіанта x1 y1 x2 y2 x3 y3 

13, 17, 21 0.8 0.4 1 0 0,6 0 

14, 18, 22 0.8 0.8 1 0.4 0.6 0.4 

15, 19, 23 -0.3 0.4 0 0.7 0 0.1 

16, 20, 24 1.5 0.5 1 0.5 1.5 0 

 

Таблиця А.3 – Координат вершин фігур для варіантів № 25-26 

№ варіанта С1 С2 R1 R2 

x1 y1 x2 y2 

25 0.6 0 1.4 0 0,4 0,4 

26 0.8 0 1.4 0 0.2 0.4 
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ДОДАТОК Б ВИМОГИ ДО ОФОРМЛЕННЯ КУРСОВОЇ РОБОТИ 

Курсова робота друкується на окремих листах формату А4 і 

підшиваються у папку або жорстко скріплюються. 

Робота складається з наступних елементів:  

- Титульний аркуш (зразок наведено у додатку Б);  

- Зміст (перелік усіх пунктів роботи з вказаними сторінками);  

- Завдання до курсової роботи (відповідно до свого варіанту);  

- Вступ (формулюються актуальність роботи та її основні цілі);  

- Практична частина (розв’язок задач з наведенням усіх проміжних 

розв’язків та необхідних пояснень);  

- Висновки (які результати досягнуто, можливості їхнього використання 

у сучасних системах автоматизації);  

- Список використаної літератури. 

Текст роботи повинен бути набраний за такими вимогами: шрифт – 

Times New Roman, розмір – 14; інтервал – 1,5; відступ першої строки – 1,25; 

вирівнювання – по ширині тексту. Кожен пункт повинен починатися з нової 

сторінки, назва пункту – жирним, 14 шрифт, всі прописні. Після назви 

необхідно зробити один відступ. 

Рисунки необхідно вставляти за допомогою Вставка→Объект→Рисунок 

Microsoft Word та вирівнювати по центру. Дозволяється вставляти рисунки 

напряму з Microsoft Visio шляхом експорту. Такі рисунки повинні відкриватися 

для редагування, а не бути картинками. Розташовувати рисунки потрібно 

відразу після посилання на них з підписом та назвою. Таблиці підписуються 

зверху з відступом 1,25. Після таблиці необхідно зробити один відступ. 

Всі формули необхідно робити у редакторі MathType 5.2 і вище 14-м 

шрифтом. Вирівнювати формули необхідно зробити по середині. 

Сторінки роботи нумеруються справа зверху. Перша сторінка не 

нумерується, але враховується як перша. 


