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 Вступ. Сучасні технологічні процеси потребують регулярного 

впровадження  нових нетрадиційних рішень для забезпечення ефективного 

функціонування виконавчих механізмів. В зв’язку з цим існує необхідність 

розробки та впровадження систем керування електричними машинами 

лінійного типу, область застосування яких стрімко розширюється. Важливим 

аспектом у рішенні цієї задачі є розробка систем керування із забезпеченням 

грубості системи керування відносно параметричних та координатних 

збурень[1,2]. 

 Постановка завдання дослідження. Метою роботи є підвищення якості 

керування систем з поступальним рухом шляхом розробки системи векторного 

керування швидкістю лінійних асинхронних двигунів (ЛАД) в умовах 

параметричних та координатних збурень на основі концепції зворотних задач 

динаміки. 

Матеріали дослідження. Система рівнянь рівноваги електричної та 

магнітної підсистем в системі координат ротора (d-q) має вид: 
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 З рівняння (4) знаходиться вектор струму вторинного елемента і 

підставляється в (2) і (3). В результаті отримується рівняння дворівневого 

спостерігача потокозчеплення (СП) первинного елемента ЛАД, в якому 

потокозчеплення оцінюються на основі відомих параметрів електричної 

машини та вимірюваного струму [1]: 
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 Синтез регуляторів потокозчеплення (РП), струму (РС) та швидкості 

(РШ) здійснений на основі концепції зворотних задач динаміки [3]. 

В системі координат (u-v) вектор 1  суміщається з віссю  u.  
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З врахуванням (7) записується рівняння математичної динамічної моделі 

ЛАД в системі координат (u-v) по базисним векторам 
1i  та 1  : 
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 З  (12) знаходиться складова струму і1u  та підставляється в рівняння (10). 

В результаті отримується рівняння (14), згідно з яким модуль вектора 

потокозчеплення регулюється складовою напруги u1u : 
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 Рівняння (14) в узагальненому вигляді без врахування параметричного 

збурення і1v можна записати так [2]: 
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 Для забезпечення в контурі регулювання астатизму другого порядку, 

необхідне виконання наступної умови: b1 = a1, b0 = a0. Згідно з [2] рівнянню 

(15) відповідає структура регулятора  зображена на рис. 1а, за умови 

забезпечення в контурі регулювання астатизму другого порядку (ν = 2). 

Отримана структура регуляторів струму та швидкості (рис. 2б) забезпечує в 

контурах регулювання астатизм першого порядку (ν = 1). 
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Рисунок 1 – Структура регулятора потокозчеплення (а) та регуляторів струму, 

швидкості (б) 

 

 Функціональна схема системи векторного керування швидкістю ЛАД 

зображена на рис. 2. 

  

Рисунок 2 - функціональна схема системи векторного керування швидкістю 
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 Дослідження розробленої системи проведено шляхом моделювання на 

прикладі прокатного стану штаби з алюмінію. ЛАД має наступні параметри: 

Fн=9770 Н; Vн=10 м/с; U1н=380 В; f1н=28; R1=0,051 Ом; L1=0,0016 Гн; R2=0,022 

Ом; L2=0,00157 Гн. Параметри регуляторів: РШ: α0 = 15, k =10000; РП: α0 = 20, 

α1 = 200, k = 2000, РС: α0 = 8000, k =1000. 

 На рис. 3а показано промасштабовані перехідні процеси потокозчеплення 

(|psi1|), зусилля (F), лінійної швидкості (V) та струму статора(I1) при розгоні до 

усталеної швидкості, накиданні та скиданні ступінчатого статичного 

навантаження Fc = 9000 Н та сповільненні до повної зупинки. На рис. 3б 

зображені похибки відпрацювання швидкості при варіаціях значень активного 

опору вторинного елемента ЛАД.  
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Рисунок 3 – Графіки перехідних процесів 

 

 Висновки. Результати моделювання свідчать про те, що досліджувана 

система володіє властивістю слабкої чутливості до параметричних та 

координатних збурень і має високі показники якості керування координатами 

завдяки розробленим законам керування.  
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