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Вступ 

На сьогоднішній день промислові роботи мають широке використання в 

різноманітних галузях виробництва. Кожен робот вміщує маніпулятор, точність 

керування рухом якого є одним з основних показників якості робота. 

В даній статті запропоновано алгоритм керуваня рухом маніпуляційної 

системи на основі концепції лінеаризації зворотним зв’язком. 

1.Синтез алгоритму керування 

Маніпуляційна система з n ступенями вільності, що має вектор 

узагальнених координат nq R , згідно [1] описується наступними 

загальними рівняннями руху 

 D(q)q h(q, q) G q M   , (1) 

де  TD (q) D(q) 0   – n x n матриця моментів інерції;  

 nh(q, q) R  – вектор відцентрових та коріолісових моментів; 

 nG(q) R  – вектор гравітаційних моментів; 

 
nM R  – вектор рушійних моментів приводних двигунів. 

Рівняння динаміки n-ланкового маніпулятора перепишемо у наступній 

формі: 

 1

q

D (q) M h(q, ) G(q)

 

   
                   (2) 

Нехай * *q ,  – n-мірні вектори заданих траєкторій змін узагальнених 

координат та узагальнених швидкостей маніпуляційної системи, вектори 

похибок відпрацювання яких визначимо у вигляді 
*

*

q q q 

 
 (3) 

Припустимо, що в моделі (2) параметри векторів h(q, ),G(q)  та матриці 

моментів інерції D(q)  є відомими, задана траєкторія *q (t)  обмежена і має 

відомі обмежені три похідні. За цих умов необхідно синтезувати нелінійний 

динамічний контролер, який формує вектор рушійних моментів M , що 

гарантує асимптотичність відпрацювання узагальнених координат, тобто 

гарантує досягнення 

t
limq 0


  (4) 

Згідно запропонованого методу, синтез виконано у два кроки. 

Крок 1 – відпрацювання узагальнених швидкостей. Запишемо друге 

рівняння (2) у похибках відпрацювання 



 1D (q) M h(q, ) G(q) *      (5) 

З цього рівняння n-мірний нелінійний динамічний регулятор буде 

 *

i

M h(q, ) G(q) D(q) K x

x K ,





      

  
 (6) 

де  1 2 nK diag k ,k ...k 0     ,  i i1 i2 inK diag k ,k ...k 0      – матриці 

коефіцієнтів пропорційних та інтегральних складових регуляторів швидкості.  

Після підстановки (6) в (5) отримаємо наступні рівняння динаміки похибок 

відпрацювання кутової швидкості у вигляді 

i

K x

x K





  

 
 (7) 

Система (7) складається з n лінійних типових систем другого порядку, які є 

стійкими для всіх 
iK 0,K 0   . 

Крок 2 – відпрацювання узагальнених координат. Перше рівняння в (2) в 

похибках відпрацювання запишеться 
* *q q    (8) 

Регулятор положення для системи (8)  
* *K q q     (9) 

формує наступні рівняння динаміки похибок відпрацювання 

i

q K q

K x

x K .







  

  

 

 (10) 

Система (10) є стійкою для всіх додатних значень коефіцієнтів матриці 

зворотних зв’язків за положенням, тобто гарантує досягнення цілі керування 

(4). 

Із структури рівнянь (10) слідує, що за умов відомих параметрів моделі 

маніпулятора (2), лінеаризуючий зворотнім зв’язком регулятор (6) та лінійний 

регулятор положення (9) гарантують лінеаризацію вихідної моделі (2) та 

перетворюють її до типової лінійної системи третього порядку, що складається 

із послідовного з’єднання двох підсистем першого та другого порядків. 

Повний алгоритм відпрацювання вміщує: лінійний регулятор положення 

(9), лінеаризуючих регулятор швидкості (6), повні рівняння якого мають вигляд 

  *M h(q, ) G(q) D(q) K x K K q q  
             . (11) 

2. Результати математичного моделювання на прикладі дволанкового 

маніпулятора 

 Прийнято, що ланки маніпулятора являють собою суцільні сталеві 

циліндри діаметром 0.02м, перша ланка довжиною 1,2 м, друга – 1 м. Вигляд 

завдання траєкторії, координат та швидкостей зображено на Рис.1. При 

дослідженні були встановлені наступні параметри регуляторів: K 200   

K 10  . Для порівняння виконано дослідження динамічної поведінки 



маніпулятора з використанням стандартного позиційно-контурного алгоритму 

керування [1]. При відпрацюванні траєкторії в нульовий момент часу 

координати мають початкові умови: х  (0) 0.285 10  м у (0) 0.213 10  м. Графіки 

рішень оберненої задачі кінематики зображені на Рис.2, перехідних процесів – 

на Рис.3 відповідно. Криві для позиційно-контурного керування показано 

пунктиром, а для синтезованого в п.1 алгоритму – суцільними лініями. 

 

0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

0 0.5 1 1.5
0

0.5

1

1.5

2

0 0.5 1 1.5
-0.5

0

0.5

1

0 0.5 1 1.5
-1

-0.5

0

0.5

1

Траєкторія  руху   y(x) y,м 

x,м 

Завдання координат x,y, м 

t,c 

t,c 

t,c 

Швидкість по осі х Vx,м/с Швидкість по осі у Vy, м/с 

x 

y 

 
Рис.1 Задані траєкторії координат та швидкостей 
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Рисунок 2 – Рішення оберненої задачі кінематики (завдання кутових положень 

та кутових швидкостей) 
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Рисунок 3 – Рушійні моменти та похибки відпрацювання  кутових положень, 

кутових швидкостей та лінійних координат. 

 

Висновок. Розроблено алгоритм керування маніпуляційною системою, що 

дозволяє відпрацьовувати траєкторію з нульовими помилками по координатах і 

по швидкостях. Отримані графіки свідчать про перевагу даного алгоритма над 

традиційним позиційно-контурним керуванням. 
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